Reconstructing a B-Cell Clonal Lineage. II. Mutation, Selection, and Affinity Maturation.

Abstract

Affinity maturation of the antibody response is a fundamental process in adaptive immunity during which B-cells activated by infection or vaccination undergo rapid proliferation accompanied by the acquisition of point mutations in their rearranged immunoglobulin (Ig) genes and selection for increased affinity for the eliciting antigen. The rate of somatic hypermutation at any position within an Ig gene is known to depend strongly on the local DNA sequence, and Ig genes have region-specific codon biases that influence the local mutation rate within the gene resulting in increased differential mutability in the regions that encode the antigen-binding domains. We have isolated a set of clonally related natural Ig heavy chain-light chain pairs from an experimentally infected influenza patient, inferred the unmutated ancestral rearrangements and the maturation intermediates, and synthesized all the antibodies using recombinant methods. The lineage exhibits a remarkably uniform rate of improvement of the effective affinity to influenza hemagglutinin (HA) over evolutionary time, increasing 1000-fold overall from the unmutated ancestor to the best of the observed antibodies. Furthermore, analysis of selection reveals that selection and mutation bias were concordant even at the level of maturation to a single antigen. Substantial improvement in affinity to HA occurred along mutationally preferred paths in sequence space and was thus strongly facilitated by the underlying local codon biases.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.3389/fimmu.2014.00170

Publication Info

Kepler, Thomas B, Supriya Munshaw, Kevin Wiehe, Ruijun Zhang, Jae-Sung Yu, Christopher W Woods, Thomas N Denny, Georgia D Tomaras, et al. (2014). Reconstructing a B-Cell Clonal Lineage. II. Mutation, Selection, and Affinity Maturation. Front Immunol, 5. p. 170. 10.3389/fimmu.2014.00170 Retrieved from https://hdl.handle.net/10161/10899.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Wiehe

Kevin J Wiehe

Associate Professor in Medicine

Dr. Kevin Wiehe is the director of research, director of computational biology and co-director of the Quantitative Research Division at the Duke Human Vaccine Institute (DHVI). He has over 20 years of experience in the field of computational biology and has expertise in computational structural biology, computational genomics, and computational immunology.

For the past decade, he has applied his unique background to developing computational approaches for studying the B cell response in both the infection and vaccination settings. He has utilized his expertise in computational structural biology to structurally model and characterize HIV and influenza antibody recognition. Dr. Wiehe has utilized his expertise in computational genomics and computational immunology to develop software to analyze large scale next generation sequencing data of antibody repertoires as well as develop computational programs for estimating antibody mutation probabilities. Dr. Wiehe has shown that low probability antibody mutations can act as rate-limiting steps in the development of broadly neutralizing antibodies in HIV.

Through his PhD, postdoc work, and now his roles at DHVI, Dr. Wiehe always approaches the analysis and the scientific discovery process from a structural biology perspective. Supporting the Duke Center for HIV Structural Biology (DCHSB), Dr. Wiehe will conduct antibody sequence analysis for antibodies used in computational and molecular modeling analyses conducted.

Woods

Christopher Wildrick Woods

Wolfgang Joklik Distinguished Professor of Global Health

1. Emerging Infections
2. Global Health
3. Epidemiology of infectious diseases
4. Clinical microbiology and diagnostics
5. Bioterrorism Preparedness
6. Surveillance for communicable diseases
7. Antimicrobial resistance

Denny

Thomas Norton Denny

Professor in Medicine

Thomas N. Denny, MSc, M.Phil, is the Chief Operating Officer of the Duke Human Vaccine Institute (DHVI), Associate Dean for Duke Research and Discovery @RTP, and a Professor of Medicine in the Department of Medicine at Duke University Medical Center. He is also an Affiliate Member of the Duke Global Health Institute. Previously, he served on the Health Sector Advisory Council of the Duke University Fuquay School of Business. Prior to joining Duke, he was an Associate Professor of Pathology, Laboratory Medicine and Pediatrics, Associate Professor of Preventive Medicine and Community Health and Assistant Dean for Research in Health Policy at the New Jersey Medical School, Newark, New Jersey. He has served on numerous committees for the NIH over the last two decades and currently is the principal investigator of an NIH portfolio in excess of 65 million dollars. Mr. Denny was a 2002-2003 Robert Wood Johnson Foundation Health Policy Fellow at the Institute of Medicine of the National Academies (IOM). As a fellow, he served on the US Senate Health, Education, Labor and Pensions Committee with legislation/policy responsibilities in global AIDS, bioterrorism, clinical trials/human subject protection and vaccine related-issues.

As the Chief Operating Officer of the DHVI, Mr. Denny has senior oversight of the DHVI research portfolio and the units/teams that support the DHVI mission. He has extensive international experience and previously was a consultant to the U.S. Centers for Disease Control and Prevention (CDC) for the President’s Emergency Plan for AIDS Relief (PEPFAR) project to oversee the development of an HIV and Public Health Center of Excellence laboratory network in Guyana. In September 2004, the IOM appointed him as a consultant to their Board on Global Health Committee studying the options for overseas placement of U.S. health professionals and the development of an assessment plan for activities related to the 2003 PEPFAR legislative act. In the 1980s, Mr. Denny helped establish a small laboratory in the Republic of Kalmykia (former Soviet Union) to improve the care of children with HIV/AIDS and served as a Board Member of the Children of Chernobyl Relief Fund Foundation. In 2005, Mr. Denny was named a consulting medical/scientific officer to the WHO Global AIDS Program in Geneva. He has also served as program reviewers for the governments of the Netherlands and South Africa as well as an advisor to several U.S. biotech companies. He currently serves as the Chair of the Scientific Advisory Board for Grid Biosciences.

Mr. Denny has authored and co-authored more than 200 peer-reviewed papers and serves on the editorial board of Communications in Cytometry and Journal of Clinical Virology. He holds an M.Sc in Molecular and Biomedical Immunology from the University of East London and a degree in Medical Law (M.Phil) from the Institute of Law and Ethics in Medicine, School of Law, University of Glasgow. In 1991, he completed a course of study in Strategic Management at The Wharton School, University of Pennsylvania. In 1993, he completed the Program for Advanced Training in Biomedical Research Management at Harvard School of Public Health. In December 2005, he was inducted as a Fellow into the College of Physicians of Philadelphia, the oldest medical society in the US.

While living in New Jersey, Mr. Denny was active in his community, gaining additional experience from two publicly elected positions. In 2000, Mr. Denny was selected by the New Jersey League of Municipalities to Chair the New Jersey Community Mental Health Citizens’ Advisory Board and Mental Health Planning Council as a gubernatorial appointment.

Alam

S. Munir Alam

Professor in Medicine

Research Interests. 

The Alam laboratory’s primary research is focused on understanding the biophysical properties of antigen-antibody binding and the molecular events of early B cell activation using the HIV-1 broadly neutralizing antibody (bnAb) lineage models. We are studying how HIV-1 Envelope proteins of varying affinities are sensed by B cells expressing HIV-1 bnAbs or their germline antigen receptors and initiate early signaling events for their activation. In the long-term these studies will facilitate design and pre-selection of immunogens for testing in animal models and accelerate HIV-1 vaccine development.
Current research include the following NIAID-funded projects   

Antigen recognition and activation of B cell antigen receptors with the specificity of HIV-1 broadly neutralizing antibodies. This project involves elucidating the early events on the B cell surface following antigen (Ag) engagement of the B cell antigen receptor (BCR) and to provide an assessment of the in vivo potential of an Ag to drive B cell activation. We are performing biophysical interactions analyses and using high-resolution microscopy to define the physico-chemical properties of BCR-Ag interactions that govern signaling and activation thresholds for BCR triggering and the BCR endocytic function in antigen internalization. The overall objective of these studies is to bridge the quantitative biophysical and membrane dynamics measurements of Ag-BCR interactions to ex-vivo and in-vivo B cell activation. This NIAID-funded research is a collaboration with co-investigators Professor Michael Reth (University of Freiburg, Germany) and Dr. Laurent Verkoczy (San Diego Biomedical Research Institute, CA).  

Immunogen Design for Induction of HIV gp41 Broadly Neutralizing Antibodies. This research project addresses the critical problem of vaccine induction of disfavored HIV-1 antibody lineages, like those that target the membrane proximal external region (MPER) of HIV Env gp41. This program combines structure and lineage-based vaccine development strategies to design immunogens that will induce bnAb lineages that are not polyreactive and therefore easier to induce. The overall objective of this program grant is to develop and test sequential immunogens that will initiate and induce HIV-1 bnAb lineages like the potent MPER bnAb DH511. Using a germline-targeting (GT) epitope scaffold design and a prime/boost strategy, we are testing induction of DH511-like bnAbs in knock-in (KI) mice models expressing the DH511 germline receptors. This P01 research program is in collaboration with Dr. William Schief (The Scripps Research Institute, CA), who leads the team that are designing germline targeting (GT)-scaffold prime and boost immunogens and Dr. Ming Tian at Harvard University who developed relevant knock-mice models for the study.
Moody

Michael Anthony Moody

Professor of Pediatrics

Tony Moody, MD is a Professor in the Department of Pediatrics, Division of Infectious Diseases and Professor in the Department of Integrative Immunobiology at Duke University Medical Center. Research in the Moody lab is focused on understanding the B cell responses during infection, vaccination, and disease. The lab has become a resource for human phenotyping, flow characterization, staining and analysis at the Duke Human Vaccine Institute (DHVI). The Moody lab is currently funded to study influenza, syphilis, HIV-1, and emerging infectious diseases.

Dr. Moody is the director of the Duke CIVICs Vaccine Center (DCVC) at (DHVI) and co-director of the Centers for Research of Emerging Infectious Disease Coordinating Center (CREID-CC). Dr. Moody is mPI of a U01 program to develop a syphilis vaccine; this program is a collaboration with mPI Dr. Justin Radolf at the University of Connecticut. Dr. Moody is also the director of the DHVI Accessioning Unit, a biorepository that provides support for work occurring at DHVI and with its many collaborators around the world by providing processing, shipping, and inventory support for a wide array of projects.

Dr. Moody and his team are involved in many networks studying vaccine response including the Collaborative Influenza Vaccine Innovation Centers (CIVICs) and the COVID-19 Prevention Network (CoVPN).

Kelsoe

Garnett H. Kelsoe

James B. Duke Distinguished Professor of Immunology
  1. Lymphocyte development and antigen-driven diversification of immunoglobulin and T cell antigen receptor genes.
    2. The germinal center reaction and mechanisms for clonal selection and self - tolerance. The origins of autoimmunity.
    3. Interaction of innate- and adaptive immunity and the role of inflammation in lymphoid organogenesis.
    4. The role of secondary V(D)J gene rearrangment in lymphocyte development and malignancies.
    5. Mathematical modeling of immune responses, DNA motifs, collaborations in bioinformatics.
    6. Humoral immunity to influenza and HIV-1.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.