Hydrologie and biotic influences on nitrate removal in a subtropical spring-fed river

Abstract

We use a long-term chemical and hydrologic record in combination with longitudinal sampling and highfrequency nitrate (NO3-) measurements from in situ sensors to describe temporal and spatial patterns of nitrogen (N) inputs and removal in the spring-fed Ichetucknee River (Columbia County, Florida) and to determine the hydrological, geomorphic, and biological factors that influence those dynamics. Over a 20-yr period of record, NO 3-N removal averaged 118 kg N d-1 (0.77 g N m-2 d-1 ) over the upper 5 km of the Ichetucknee River. Three independent estimates of gross autotrophic N assimilation (from gross primary production, diel NO3- variation, and standing biomass) agreed closely but accounted for less than 20% of observed N removal. Longitudinal surveys indicate negligible or negative dissolved organic nitrogen and ammonium (NH4+) production, suggesting that denitrification is the predominant mechanism of N removal in this river. A positive relationship between discharge and the magnitude of NO3-N removal shows that interactions with the surrounding floodplain exert considerable influence at high flows, and longitudinal NO3- patterns indicate that N removal may be influenced by channel morphology. These results suggest a greater role for dissimilatory processes and hydrologic connectivity with hyporheic and floodplain sediments than has been previously recognized in highly productive spring-fed rivers of north Florida. While hydrologic variation is the primary determinant of variation in NO 3- removal within the Ichetucknee River, comparison across systems indicates that biotic characteristics can cause significant deviation from predictions based on purely physical models of relationships between river size and N removal. © 2010 by the American Society of Limnology and Oceanography, Inc.

Department

Description

Provenance

Subjects

Citation

Scholars@Duke

Heffernan

James Brendan Heffernan

Associate Professor of Ecosystem Ecology and Ecohydrology

I am interested in major changes in ecosystem structure, particularly in streams, rivers and wetlands. My work focuses on feedbacks among ecological, physical, and biogeochemical processes, and uses a wide range of tools and approaches. I am particularly interested in projects that address both basic ecological theory and pressing environmental problems. Increasingly, we are applying tools and theories developed for local ecosystems to better understand ecological patterns and mechanisms at regional and continental scales.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.