A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


Photon-counting CT (PCCT) is powerful for spectral imaging and material decomposition but produces noisy weighted filtered backprojection (wFBP) reconstructions. Although iterative reconstruction effectively denoises these images, it requires extensive computation time. To overcome this limitation, we propose a deep learning (DL) model, UnetU, which quickly estimates iterative reconstruction from wFBP. Utilizing a 2D U-net convolutional neural network (CNN) with a custom loss function and transformation of wFBP, UnetU promotes accurate material decomposition across various photon-counting detector (PCD) energy threshold settings. UnetU outperformed multi-energy non-local means (ME NLM) and a conventional denoising CNN called UnetwFBP in terms of root mean square error (RMSE) in test set reconstructions and their respective matrix inversion material decompositions. Qualitative results in reconstruction and material decomposition domains revealed that UnetU is the best approximation of iterative reconstruction. In reconstructions with varying undersampling factors from a high dose ex vivo scan, UnetU consistently gave higher structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) to the fully sampled iterative reconstruction than ME NLM and UnetwFBP. This research demonstrates UnetU's potential as a fast (i.e., 15 times faster than iterative reconstruction) and generalizable approach for PCCT denoising, holding promise for advancing preclinical PCCT research.





Published Version (Please cite this version)


Publication Info

Nadkarni, Rohan, Darin P Clark, Alex J Allphin and Cristian T Badea (2023). A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images. Tomography (Ann Arbor, Mich.), 9(4). pp. 1286–1302. 10.3390/tomography9040102 Retrieved from https://hdl.handle.net/10161/28880.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Darin Clark

Assistant Professor in Radiology

Cristian Tudorel Badea

Professor in Radiology

  • Our lab's research focus lies primarily in developing novel quantitative imaging systems, reconstruction algorithms and analysis methods.  My major expertise is in preclinical CT.
  • Currently, we are particularly interested in developing novel strategies for spectral CT imaging using nanoparticle-based contrast agents for theranostics (i.e. therapy and diagnostics).
  • We are also engaged in developing new approaches for multidimensional CT image reconstruction suitable to address difficult undersampling cases in cardiac and spectral CT (dual energy and photon counting) using compressed sensing and/or deep learning.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.