Structural basis for receptor subtype-specific regulation revealed by a chimeric beta 3/beta 2-adrenergic receptor.
Abstract
The physiological significance of multiple G-protein-coupled receptor subtypes, such as the beta-adrenergic receptors (beta ARs), remains obscure, since in many cases several subtypes activate the same effector and utilize the same physiological agonists. We inspected the deduced amino acid sequences of the beta AR subtypes for variations in the determinants for agonist regulation as a potential basis for subtype differentiation. Whereas the beta 2AR has a C terminus containing 11 serine and threonine residues representing potential sites for beta AR kinase phosphorylation, which mediates rapid agonist-promoted desensitization, only 3 serines are present in the comparable region of the beta 3AR, and they are in a nonfavorable context. The beta 3AR also lacks sequence homology in regions which are important for agonist-mediated sequestration and down-regulation of the beta 2AR, although such determinants are less well defined. We therefore tested the idea that the agonist-induced regulatory properties of the two receptors might differ by expressing both subtypes in CHW cells and exposing them to the agonist isoproterenol. The beta 3AR did not display short-term agonist-promoted functional desensitization or sequestration, or long-term down-regulation. To assign a structural basis for these subtype-specific differences in agonist regulation, we constructed a chimeric beta 3/beta 2AR which comprised the beta 3AR up to proline-365 of the cytoplasmic tail and the C terminus of the beta 2AR. When cells expressing this chimeric beta 3/beta 2AR were exposed to isoproterenol, functional desensitization was observed. Whole-cell phosphorylation studies showed that the beta 2AR displayed agonist-dependent phosphorylation, but no such phosphorylation could be demonstrated with the beta 3AR, even when beta AR kinase was overexpressed. In contrast, the chimeric beta 3/beta 2AR did display agonist-dependent phosphorylation, consistent with its functional desensitization. In addition to conferring functional desensitization and phosphorylation to the beta 3AR, the C-terminal tail of the beta 2AR also conferred agonist-promoted sequestration and long-term receptor down-regulation.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Scholars@Duke
Neil J. Freedman
Our work focuses on atherosclerosis-related signal transduction and the genetic bases of atherosclerosis and vein graft failure, both in vitro and in vivo. We investigate the regulation of receptor protein tyrosine kinases by G protein-coupled receptor kinases (GRKs), and the role of GRKs and β-arrestins in atherosclerosis; molecular mechanisms of atherogenesis associated with the dual Rho-GEF kalirin, the F-actin-binding protein Drebrin, and small nucleolar RNAs (snoRNAs) of the Rpl13a locus. For in vivo modeling of atherosclerosis and neointimal hyperplasia, we use mouse carotid artery bypass grafting with either veins or arteries from gene-deleted or congenic wild type mice, as well as aortic atherosclerosis studies and bone marrow transplantation. To study receptor phosphorylation, signal transduction, and intracellular trafficking, we employ primary smooth muscle cells, endothelial cells, and macrophages derived from knockout mice, as well as cells treated with RNA interference.
Key Words: atherosclerosis, G protein-coupled receptor kinases, arrestins, desensitization, phosphorylation, receptor protein tyrosine kinases, smooth muscle cells, neointimal hyperplasia, Rho-GEF, Drebrin, snoRNAs.
Robert J. Lefkowitz
Dr. Lefkowitz’s memoir, A Funny Thing Happened on the Way to Stockholm, recounts his early career as a cardiologist and his transition to biochemistry, which led to his Nobel Prize win.
Robert J. Lefkowitz, M.D. is Chancellor’s Distinguished Professor of Medicine and Professor of Biochemistry and Chemistry at the Duke University Medical Center. He has been an Investigator of the Howard Hughes Medical Institute since 1976. Dr. Lefkowitz began his research career in the late 1960’s and early 1970’s when there was not a clear consensus that specific receptors for drugs and hormones even existed. His group spent 15 difficult years developing techniques for labeling the receptors with radioactive drugs and then purifying the four different receptors that were known and thought to exist for adrenaline, so called adrenergic receptors. In 1986 Dr. Lefkowitz transformed the understanding of what had by then become known as G protein coupled receptors because of the way the receptor signal for the inside of a cell through G proteins, when he and his colleagues cloned the gene for the beta2-adrenergic receptor. They immediately recognized the similarity to a molecule called rhodopsin which is essentially a light receptor in the retina. This unexpected finding established the beta receptor and rhodopsin as the first member of a new family of proteins. Because each has a peptide structure, which weaves across the cell membrane seven times, these receptors are referred to as seven transmembrane receptors. This super family is now known to be the largest, most diverse and most therapeutically accessible of all the different kinds of cellular receptors. There are almost a thousand members of this receptor family and they regulate virtually all known physiological processes in humans. They include the receptors not only to numerous hormones and neurotransmitters but for the receptors which mediate the senses of sweet and bitter taste and smell amongst many others. Dr. Lefkowitz also discovered the mechanism by which receptor signaling is turned off, a process known as desensitization. Dr. Lefkowitz work was performed at the most fundamental and basic end of the research spectrum and has had remarkable consequences for clinical medicine. Today, more than half of all prescription drug sales are of drugs that target either directly or indirectly the receptors discovered by Dr. Lefkowitz and his trainees. These include amongst many others beta blockers, angiotensin receptor blockers or ARBs and antihistamines. Over the past decade he has discovered novel mechanisms by which the receptors function which may lead to the development of an entirely new class of drugs called “biased agonists”. Several such compounds are already in advanced stages of clinical testing. Dr. Lefkowitz has received numerous honors and awards, including the National Medal of Science, the Shaw Prize, the Albany Prize, and the 2012 Nobel Prize in Chemistry. He was elected to the USA National Academy of Sciences in 1988, the Institute of Medicine in 1994, and the American Academy of Arts and Sciences in 1988.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.