Neuroprotective efficacy from a lipophilic redox-modulating Mn(III) N-Hexylpyridylporphyrin, MnTnHex-2-PyP: rodent models of ischemic stroke and subarachnoid hemorrhage.


Intracerebroventricular treatment with redox-regulating Mn(III) N-hexylpyridylporphyrin (MnPorphyrin) is remarkably efficacious in experimental central nervous system (CNS) injury. Clinical development has been arrested because of poor blood-brain barrier penetration. Mn(III) meso-tetrakis (N-hexylpyridinium-2-yl) porphyrin (MnTnHex-2-PyP) was synthesized to include four six-carbon (hexyl) side chains on the core MnPorphyrin structure. This has been shown to increase in vitro lipophilicity 13,500-fold relative to the hydrophilic ethyl analog Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP). In normal mice, we found brain MnTnHex-2-PyP accumulation to be ∼9-fold greater than MnTE-2-PyP 24 h after a single intraperitoneal dose. We then evaluated MnTnHex-2-PyP efficacy in outcome-oriented models of focal cerebral ischemia and subarachnoid hemorrhage. For focal ischemia, rats underwent 90-min middle cerebral artery occlusion. Parenteral MnTnHex-2-PyP treatment began 5 min or 6 h after reperfusion onset and continued for 7 days. Neurologic function was improved with both early (P = 0.002) and delayed (P = 0.002) treatment onset. Total infarct size was decreased with both early (P = 0.03) and delayed (P = 0.01) treatment. MnTnHex-2-PyP attenuated nuclear factor κB nuclear DNA binding activity and suppressed tumor necrosis factor-α and interleukin-6 expression. For subarachnoid hemorrhage, mice underwent perforation of the anterior cerebral artery and were treated with intraperitoneal MnTnHex-2-PyP or vehicle for 3 days. Neurologic function was improved (P = 0.02), and vasoconstriction of the anterior cerebral (P = 0.0005), middle cerebral (P = 0.003), and internal carotid (P = 0.015) arteries was decreased by MnTnHex-2-PyP. Side-chain elongation preserved MnPorphyrin redox activity, but improved CNS bioavailability sufficient to cause improved outcome from acute CNS injury, despite delay in parenteral treatment onset of up to 6 h. This advance now allows consideration of MnPorphyrins for treatment of cerebrovascular disease.





Published Version (Please cite this version)


Publication Info

Sheng, Huaxin, Ivan Spasojevic, Hubert M Tse, Jin Yong Jung, Jun Hong, Zhiquan Zhang, Jon D Piganelli, Ines Batinic-Haberle, et al. (2011). Neuroprotective efficacy from a lipophilic redox-modulating Mn(III) N-Hexylpyridylporphyrin, MnTnHex-2-PyP: rodent models of ischemic stroke and subarachnoid hemorrhage. The Journal of pharmacology and experimental therapeutics, 338(3). pp. 906–916. 10.1124/jpet.110.176701 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Huaxin Sheng

Associate Professor in Anesthesiology

We have successfully developed various rodent models of brain and spinal cord injuries in our lab, such as focal cerebral ischemia, global cerebral ischemia, head trauma, subarachnoid hemorrhage, intracerebral hemorrhage, spinal cord ischemia and compression injury. We also established cardiac arrest and hemorrhagic shock models for studying multiple organ dysfunction.  Our current studies focus on two projects. One is to examine the efficacy of catalytic antioxidant in treating cerebral ischemia and the other is to examine the efficacy of post-conditioning on outcome of subarachnoid hemorrhage induced cognitive dysfunction.


Ivan Spasojevic

Associate Professor in Medicine

Zhiquan Zhang

Assistant Professor in Anesthesiology

Ines Batinic-Haberle

Professor Emeritus of Radiation Oncology

            A major interest of mine has been in the design and synthesis of Mn porphyrin(MnP)-based powerful catalytic antioxidants which helped establish structure-activity relationship (SAR). It relates the redox property of metalloporphyrins to their ability to remove superoxide. SAR has facilitated the design of redox-active therapeutics and served as a tool for mechanistic considerations. Importantly SAR parallels the magnitude of the therapeutic potential of SOD mimics and is valid for all classes of redox-active compounds. Two lead Mn porphyrins are already in five Phase II clinical trials (reviewed in Batinic-Haberle et al, Oxid Med Cell Longevity 2021). Recent research suggests immense potential of MnPs in cardiac diseases. MnTE-2-PyP (AEOL10113, BMX-010) prevents and treats cardiac arrhythmia, while MnTnBuOE-2-PyP (BMX-001) fully suppressed the development of aortic sclerosis in mice. The latter result is relevant to the cancer patients undergoing chemotherapy. In addition to breast cancer, in collaboration with Angeles Alvarez Secord, MD, MHSc, we have recently shown the anticancer effects of Mn porphyrin/ascorbate in cellular and mouse models of ovarian cancer.

            In parallel with synthetic efforts, I have also been interested in the mechanistic aspects of differential actions of Mn porphyrins in normal vs tumor tissue. In-depth studies of chemistry and biology of the reactions of MnPs with redox-active agents relevant to cancer therapy – ascorbate, chemotherapy and radiation – set ground for understanding the role of thermodynamics and kinetics in the mechanism of action of Mn porphyrins. Mechanistic studies have been revealed in Batinic-Haberle et al, Antioxidant Redox Signal 2018, Batinic-Haberle and Tome, Redox Biology 2019 and Batinic-Haberle et al Oxidative Medicine and Cellular Longevity 2021. My research has resulted in over 230 publications, 18 268 citations and an h-index of 64. For my achievements, I have been awarded the 2021 Discovery Award from the Society for Redox Biology and Medicine, SfRBM.

Additional Training

  • Postdoctoral fellowship with Professor Alvin Crumbliss in the field of Bioinorganic Chemistry, Department of Chemistry, Duke University
  • Postdoctoral fellowship with Professor Irwin Fridovich in the field of Redox Biology, Department of Biochemistry, Duke University School of Medicine

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.