Evolution of networks and sequences in eukaryotic cell cycle control.

Loading...
Thumbnail Image

Date

2011-12-27

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

215
views
203
downloads

Citation Stats

Attention Stats

Abstract

The molecular networks regulating the G1-S transition in budding yeast and mammals are strikingly similar in network structure. However, many of the individual proteins performing similar network roles appear to have unrelated amino acid sequences, suggesting either extremely rapid sequence evolution, or true polyphyly of proteins carrying out identical network roles. A yeast/mammal comparison suggests that network topology, and its associated dynamic properties, rather than regulatory proteins themselves may be the most important elements conserved through evolution. However, recent deep phylogenetic studies show that fungal and animal lineages are relatively closely related in the opisthokont branch of eukaryotes. The presence in plants of cell cycle regulators such as Rb, E2F and cyclins A and D, that appear lost in yeast, suggests cell cycle control in the last common ancestor of the eukaryotes was implemented with this set of regulatory proteins. Forward genetics in non-opisthokonts, such as plants or their green algal relatives, will provide direct information on cell cycle control in these organisms, and may elucidate the potentially more complex cell cycle control network of the last common eukaryotic ancestor.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1098/rstb.2011.0078

Publication Info

Cross, Frederick R, Nicolas E Buchler and Jan M Skotheim (2011). Evolution of networks and sequences in eukaryotic cell cycle control. Philos Trans R Soc Lond B Biol Sci, 366(1584). pp. 3532–3544. 10.1098/rstb.2011.0078 Retrieved from https://hdl.handle.net/10161/9350.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.