Immunodominant liver-specific expression suppresses transgene-directed immune responses in murine pompe disease.

Loading...
Thumbnail Image

Date

2012-05

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

143
views
145
downloads

Citation Stats

Abstract

Pompe disease can be treated effectively, if immune tolerance to enzyme replacement therapy (ERT) with acid α-glucosidase (GAA) is present. An adeno-associated viral (AAV) vector carrying a liver-specific regulatory cassette to drive GAA expression (AAV-LSPhGAA) established immune tolerance in GAA knockout (KO) mice, whereas ubiquitous expression with AAV-CBhGAA provoked immune responses. Therefore, we investigated the hypothesis that immune tolerance induced by hepatic-restricted expression was dominant. AAV-LSPhGAA and AAV-CBhGAA were administered singly or in combination to groups of adult GAA-KO mice, and AAV-LSPhGAA induced immune tolerance even in combination with AAV-CBhGAA. The dual vector approach to GAA expression improved biochemical correction of GAA deficiency and glycogen accumulations at 18 weeks, and improved motor function testing including wire-hang and grip-strength testing. The greatest efficacy was demonstrated by dual vector administration, when both vectors were pseudotyped as AAV8. T cells from mice injected with AAV-LSPhGAA failed to proliferate at all after an immune challenge with GAA and adjuvant, whereas mock-treated GAA-KO mice mounted vigorous T cell proliferation. Unlike AAV-LSPhGAA, AAV-CBhGAA induced selective cytokine and chemokine expression in liver and spleen after the immune challenge. AAV-CBhGAA transduced dendritic cells and expressed high-level GAA, whereas AAV-LSPhGAA failed to express GAA in dendritic cells. The level of transduction in liver was much higher after dual AAV8 vector administration at 18 weeks, in comparison with either vector alone. Dual vector administration failed to provoke antibody formation in response to GAA expression with AAV-CBhGAA; however, hepatic-restricted expression from dual vector expression did not prevent antibody formation after a strong immune challenge with GAA and adjuvant. The relevance of immune tolerance to gene therapy in Pompe disease indicates that hepatic expression might best be combined with nonhepatic expression, achieving the benefits of ubiquitous expression in addition to evading deleterious immune responses.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1089/hum.2011.063

Publication Info

Zhang, P, B Sun, T Osada, R Rodriguiz, XY Yang, X Luo, AR Kemper, TM Clay, et al. (2012). Immunodominant liver-specific expression suppresses transgene-directed immune responses in murine pompe disease. Hum Gene Ther, 23(5). pp. 460–472. 10.1089/hum.2011.063 Retrieved from https://hdl.handle.net/10161/15089.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Sun

Baodong Sun

Associate Professor in Pediatrics

My overall research interests are finding effective treatment for human glycogen storage diseases (GSDs) and other inherited metabolic disorders. My current research focuses on identification of novel therapeutic targets and development of effective therapies for GSD II (Pompe disease), GSD III (Cori disease), and GSD IV (Andersen disease) using cellular and animal disease models. The main therapeutic approaches we are using in our pre-clinical studies include protein/enzyme therapy, AAV-mediated gene therapy, and substrate reduction therapy with small molecule drugs.

Osada

Takuya Osada

Adjunct Associate Professor in the Department of Surgery
Koeberl

Dwight D. Koeberl

Professor of Pediatrics

As a physician-scientist practicing clinical and biochemical genetics, I am highly motivated to seek improved therapy for my patients with inherited disorders of metabolism. The focus of our research has been the development of gene therapy with adeno-associated virus (AAV) vectors, most recently by genome editing with CRISPR/Cas9. We have developed gene therapy for inherited disorders of metabolism, especially glycogen storage disease (GSD) and phenylketonuria (PKU). 
1) GSD Ia: Glucose-6-phosphatase (G6Pase) deficient animals provide models for developing new therapy for GSD Ia, although early mortality complicates research with both the murine and canine models of GSD Ia. We have prolonged the survival and reversed the biochemical abnormalities in G6Pase-knockout mice and dogs with GSD type Ia, following the administration of AAV8-pseudotyped AAV vectors encoding human G6Pase. More recently, we have performed genome editing to integrate a therapeutic transgene in a safe harbor locus for mice with GSD Ia, permanently correcting G6Pase deficiency in the GSD Ia liver. Finally, we have identified reduced autophagy as an underlying hepatocellular defect that might be treated with pro-autophagic drugs in GSD Ia.
2) GSD II/Pompe disease: Pompe disease is caused by the deficiency of acid-alpha-glucosidase (GAA) in muscle, resulting in the massive accumulation of lysosomal glycogen in striated muscle with accompanying weakness. While enzyme replacement has shown promise in infantile-onset Pompe disease patients, no curative therapy is available. We demonstrated that AAV vector-mediated gene therapy will likely overcome limitations of enzyme replacement therapy, including formation of anti-GAA antibodies and the need for frequent infusions. We demonstrated that liver-restricted expression with an AAV vector prevented antibody responses in GAA-knockout mice by inducing immune tolerance to human GAA. Antibody responses have complicated enzyme replacement therapy for Pompe disease and emphasized a potential advantage of gene therapy for this disorder. The strategy of administering low-dose gene therapy prior to initiation of enzyme replacement therapy, termed immunomodulatory gene therapy, prevented antibody formation and increased efficacy in Pompe disease mice. We are currently conducting a Phase I clinical trial of immunomodulatory gene therapy in adult patients with Pompe disease. Furthermore, we have developed drug therapy to increase the receptor-mediated uptake of GAA in muscle cells, which provides adjunctive therapy to more definitively treat Pompe disease.
3) PKU: In collaboration with researchers at OHSU, we performed an early gene therapy experiment that demonstrated long-term biochemical correction of PKU in mice with an AAV8 vector. PKU is a very significant disorder detected by newborn screening and currently inadequately treated by dietary therapy. Phenylalanine levels in mice were corrected in the blood, and elevated phenylalanine causes mental retardation and birth defects in children born to affected women, and gene therapy for PKU would address an unmet need for therapy in this disorder.

Currently we are developing methods for genome editing that will stably correct the enzyme  deficiency in GSD Ia and in Pompe disease.  Our long-term goal is to develop efficacious genome editing for glycogen storage diseases, which will allow us to treat these conditions early in life with long-term benefits. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.