Climate adaptation and policy-induced inflation of coastal property value.

Loading...
Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

624
views
151
downloads

Citation Stats

Abstract

Human population density in the coastal zone and potential impacts of climate change underscore a growing conflict between coastal development and an encroaching shoreline. Rising sea-levels and increased storminess threaten to accelerate coastal erosion, while growing demand for coastal real estate encourages more spending to hold back the sea in spite of the shrinking federal budget for beach nourishment. As climatic drivers and federal policies for beach nourishment change, the evolution of coastline mitigation and property values is uncertain. We develop an empirically grounded, stochastic dynamic model coupling coastal property markets and shoreline evolution, including beach nourishment, and show that a large share of coastal property value reflects capitalized erosion control. The model is parameterized for coastal properties and physical forcing in North Carolina, U.S.A. and we conduct sensitivity analyses using property values spanning a wide range of sandy coastlines along the U.S. East Coast. The model shows that a sudden removal of federal nourishment subsidies, as has been proposed, could trigger a dramatic downward adjustment in coastal real estate, analogous to the bursting of a bubble. We find that the policy-induced inflation of property value grows with increased erosion from sea level rise or increased storminess, but the effect of background erosion is larger due to human behavioral feedbacks. Our results suggest that if nourishment is not a long-run strategy to manage eroding coastlines, a gradual removal is more likely to smooth the transition to more climate-resilient coastal communities.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pone.0121278

Publication Info

McNamara, Dylan E, Sathya Gopalakrishnan, Martin D Smith and A Brad Murray (2015). Climate adaptation and policy-induced inflation of coastal property value. PLoS One, 10(3). p. e0121278. 10.1371/journal.pone.0121278 Retrieved from https://hdl.handle.net/10161/13500.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Smith

Martin D. Smith

George M. Woodwell Distinguished Professor of Environmental Economics

Smith studies the economics of the oceans, including fisheries, marine ecosystems, seafood markets, and coastal climate adaptation. He has written on a range of policy-relevant topics, including economics of marine reserves, seasonal closures in fisheries, ecosystem-based management, catch shares, nutrient pollution, aquaculture, genetically modified foods, the global seafood trade, organic agriculture, coastal property markets, and coastal responses to climate change. He is best known for identifying unintended consequences of marine and coastal policies that ignore human behavioral feedbacks. Smith’s methodological interests span micro-econometrics, optimal control theory, time series analysis, and numerical modeling of coupled human-natural systems. Smith’s published work appears in The American Economic Review, Nature, Science, Proceedings of the National Academy of Sciences, Journal of Environmental Economics and Management, the Review of Economics and Statistics, and a number of other scholarly journals that span environmental economics, fisheries science, marine policy, ecology, and the geo-sciences. Smith has received national and international awards, including the Quality of Research Discovery from the Agricultural and Applied Economics Association, Outstanding Article in Marine Resource Economics, and an Aldo Leopold Leadership Fellowship. His research has been funded by the National Science Foundation, the National Oceanic and Atmospheric Administration, the National Center for Ecological Analysis and Synthesis, and the Research Council of Norway. Smith has served as Editor-in-Chief of the journal Marine Resource Economics, Co-Editor of the Journal of the Association of Environmental and Resource Economists, and Co-Editor of the Journal of Environmental Economics and Management. He served as a member of the Scientific and Statistical Committee of the Mid-Atlantic Fishery Management Council and currently serves on the Ocean Studies Board of the National Academies.

Murray

A. Brad Murray

Professor of Geomorphology and Coastal Processes

Murray, a geomorphologist, studies how Earth-surface environments are shaped, and how they change over time, especially in response to changing forcing. He has addressed phenomena in desert, artic, alpine, and riverine environments, although most of his recent research focuses on coastal environments. Much of his research addresses couplings between physical and ecological processes, and couplings between natural and human dynamics. Murray approaches natural systems, and human/natural coupled systems, with the perspective and techniques developed in the study of nonlinear dynamics and complex systems, looking for possibly simple, emergent interactions that could explain apparently complicated behaviors. He develops and uses relatively simple, numerical models to test such hypotheses, and uses observations in developing hypotheses and testing models (using strategies and types of model predictions most effective for testing the usefulness of the type of model in question, in specific scientific contexts). Murray’s most recent research falls under three umbrellas, investigating: 1) how changes in the size and shape of river deltas can be driven by couplings between river processes, coastal processes, and sea-level rise, and by couplings between physical and ecological processes; 2) how coastlines (sandy and rocky) are shaped and reshaped over time, including the effects of changing storm climates; 3) how coastal barriers and back-barrier marshes and bays respond to changing rates of sea-level rise and storm impacts. Some of the research under each of these umbrellas addresses couplings between human actions and landscape/ecosystem evolution.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.