EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis.

Abstract

Aberrant activation of EGFR in human cancers promotes tumorigenesis through stimulation of AKT signaling. Here, we determined that the discoidina neuropilin-like membrane protein DCBLD2 is upregulated in clinical specimens of glioblastomas and head and neck cancers (HNCs) and is required for EGFR-stimulated tumorigenesis. In multiple cancer cell lines, EGFR activated phosphorylation of tyrosine 750 (Y750) of DCBLD2, which is located within a recently identified binding motif for TNF receptor-associated factor 6 (TRAF6). Consequently, phosphorylation of DCBLD2 Y750 recruited TRAF6, leading to increased TRAF6 E3 ubiquitin ligase activity and subsequent activation of AKT, thereby enhancing EGFR-driven tumorigenesis. Moreover, evaluation of patient samples of gliomas and HNCs revealed an association among EGFR activation, DCBLD2 phosphorylation, and poor prognoses. Together, our findings uncover a pathway in which DCBLD2 functions as a signal relay for oncogenic EGFR signaling to promote tumorigenesis and suggest DCBLD2 and TRAF6 as potential therapeutic targets for human cancers that are associated with EGFR activation.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1172/jci73093

Publication Info

Feng, Haizhong, Giselle Y Lopez, Chung Kwon Kim, Angel Alvarez, Christopher G Duncan, Ryo Nishikawa, Motoo Nagane, An-Jey A Su, et al. (2014). EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis. The Journal of clinical investigation, 124(9). pp. 3741–3756. 10.1172/jci73093 Retrieved from https://hdl.handle.net/10161/17852.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

López

Giselle Yvette López

Associate Professor in Pathology

I am a physician scientist with a clinical focus on neuropathology, and a research interest in brain tumors. Originally from Maryland, I completed my undergraduate training at the University of Maryland, completing degrees in Physiology and Neurobiology as well as Spanish Language and Literature. I subsequently came to Duke for my MD and PhD, and discovered a passion for brain tumor research, and quickly realized that this was my life's calling. Clinically, I specialize in neuropathology. While I have active projects and collaborations on many kinds of brain tumors, my lab's primary focus is oligodendroglioma, a kind of infiltrative brain tumor that impacts adults. Our goal is to identify new ways to treat these tumors and improve the lives of patients with oligodendrogliomas and other kinds of brain tumors. By blending together computational approaches with wet lab approaches, we use the strengths inherent in different research modalities to excel in identifying unexplored pathways and thinking outside the box to identify new ways to target this brain tumor.  We do this through research in an inclusive, multidisciplinary lab environment that strives for excellence in research while creating well-rounded, thriving scientists ready for the next step in their careers.

Research Opportunities
We currently have opportunities in the laboratory for one-year projects (ideal for post-bac fellows or third year med student research experiences), as well as more extensive projects (graduate student-level). These projects are centered on identifying and testing novel therapeutic approaches for oligodendroglioma using in vitro and in vivo model systems. Please reach out if you are interested and would like to hear more about my mentoring philosophy, lab culture, and opportunities to be at the cutting edge of science.

McLendon

Roger Edwin McLendon

Professor of Pathology

Brain tumors are diagnosed in more than 20,000 Americans annually. The most malignant neoplasm, glioblastoma, is also the most common. Similarly, brain tumors constitute the most common solid neoplasm in children and include astrocytomas of the cerebellum, brain stem and cerebrum as well as medulloblastomas of the cerebellum.  My colleagues and I have endeavored to translate the bench discoveries of genetic mutations and aberrant protein expressions found in brain tumors to better understand the processes involved in the etiology, pathogenesis, and treatment of brain tumors.  Using the resources of the Preston Robert Brain Tumor Biorepository at Duke, our team, consisting of Henry Friedman, Allan Friedman, and Hai Yan and lead by Darell Bigner, have helped to identify mutations in Isocitrate Dehydrogenase (IDH1 and IDH2) as a marker of good prognosis in gliomas of adults.  This test is now offered at Duke as a clinical test.  Working with the Molecular Pathology Laboratory at Duke, we have also brought testing for TERT promoter region mutations as another major test for classifying gliomas in adults.  Our collaboration with the Toronto Sick Kids Hospital has resulted in prognostic testing for childhood medulloblastomas, primitive neuroectodermal tumors, and ependymomas at Duke.

Bigner

Darell Doty Bigner

E. L. and Lucille F. Jones Cancer Distinguished Research Professor, in the School of Medicine

The Causes, Mechanisms of Transformation and Altered Growth Control and New Therapy for Primary and Metastatic Tumors of the Central Nervous System (CNS).

There are over 16,000 deaths in the United States each year from primary brain tumors such as malignant gliomas and medulloblastomas, and metastatic tumors to the CNS and its covering from systemic tumors such as carcinoma of the lung, breast, colon, and melanoma. An estimated 80,000 cases of primary brain tumors were expected to be diagnosed last year. Of that number, approximately 4,600 diagnosed will be children less than 19 years of age. During the last 20 years, however, there has been a significant increase in survival rates for those with primary malignant brain tumors.

For the last 44 years my research has involved the investigation of the causes, mechanism of transformation and altered growth control, and development of new methods of therapy for primary brain tumors and those metastasizing to the CNS and its coverings. In collaboration with my colleagues in the Preston Robert Tisch Brain Tumor Center, new drugs and those not previously thought to be active against CNS tumors have been identified. Overcoming mechanisms of drug resistance in primary brain tumors are also being pursued.

As the founding Director of the Preston Robert Tisch Brain Tumor Center, I help coordinate the research activities of all 37 faculty members in the Brain Tumor Center. These faculty members have projects ranging from very basic research into molecular etiology, molecular epidemiology, signal transduction; translational research performing pre-clinical evaluation of new therapies, and many clinical investigative efforts. I can describe any of the Brain Tumor Center faculty member’s research to third year students and then direct them to specific faculty members with whom the students would like a discussion.

We have identified through genome-wide screening methodology several new target molecules selectively expressed on malignant brain tumors, but not on normal brain. These include EGFRwt, EGFRvIII, and two lacto series gangliosides, 3'-isoLM1 and 3',6'-isoLD1 and chondroitin proteoglycan sulfate. We raised conventional and fully human monoclonal antibodies against most of these targets as well as having developed single fragment chain molecules from naïve human libraries.

My personal research focuses on molecularly targeted therapies of primary and metastatic CNS tumors with monoclonal antibodies and their fragments. Our study we conducted was with a molecule we discovered many years ago, the extracellular matrix molecule, Tenascin. We have treated over 150 malignant brain tumor patients with excellent results with a radiolabeled antibody we developed against Tenascin. We are collaborating with Dr. Ira Pastan at NIH to develop tumor-targeted therapies by fusing single fragment chain molecules from monoclonal antibodies or from naïve human libraries to the truncated fragment of pseudomonas exotoxin A. One example of this is the pseudomonas exotoxin conjugated to a single fragment chain antibody that reacts with wild type EGFR and EGFRvIII, two overexpressed proteins on glioblastoma. The immunotoxin, called D2C7-IT, is currently being investigated in an FDA dose-escalation study, in which patients undergoing treatment of this investigational new drug are showing positive responses. My laboratory is also working with Matthias Gromeier, creator of the oncolytic poliovirus - a re-engineered poliovirus that is lethal to cancer cells, but not lethal to normal cells. The oncolytic poliovirus therapeutic approach has shown such promising results in patients with glioblastoma, that it was recently featured on a on a special two-segment program of 60 Minutes. The next clinical step will be to combine both the virus and the immunotoxin with anti-PD1, an immune checkpoint blockade inhibitor and with anti-CD40, a fully human monoclonal antibody which converts tumor stimulant macrophages into tumor suppressive macrophages. We believe that regional tumor-targeted cytotoxic therapies, such as oncolytic poliovirus and the D2C7 immunotoxin, not only specifically target and destroy tumor cells, but in the process, initiate immune events that promote an in situ vaccine effect. That immune response can be amplified by human checkpoint blockade to engender a long-term systemic immune response that effectively eliminates recurrent and disseminated GBM cells. Ultimately, all three agents may be used together, providing different antigenic targets and cytotoxicity mechanisms.

We have identified through genome-wide screening methodology several new target molecules selectively expressed on malignant brain tumors, but not on normal brain. These include glycoprotein non-metastatic B (GPNMB), a molecule shared with malignant melanoma; MRP3, a member of the multidrug resistant family; and two lacto series gangliosides, 3'-isoLM1 and 3',6'-isoLD1 and chondroitin proteoglycan sulfate. We are raising conventional monoclonal antibodies against all of these targets as well as developing single fragment chain molecules from naïve human libraries. When necessary, affinity maturation in vitro is carried out and the antibodies and fragments are armed either with radioactive iodine, radioactive lutetium, or radioactive Astatine-211. Other constructs are evaluated for unarmed activity and some are armed with Pseudomonas exotoxin. After development of the constructs, they are evaluated in human malignant glioma xenograft systems and then all studies necessary for Investigational New Drug Permits from the Food and Drug Administration are carried out prior to actual clinical trial.

I was senior author on a New England Journal of Medicine paper that was the first to show markedly increased survival in low to intermediate grade gliomas with an isocitrate dehydrogenase mutation.

The first fully funded Specialized Research Center on Primary and Metastatic Tumors to the CNS funded by the National Institutes of Health, of which I was Principal Investigator, was funded for 30 years at which time the type of grant was discontinued. My NCI MERIT Award, which ranked in the upper 1.2 percentile of all NIH grants at the time of its last review, is currently in its 40th year of continuous funding. It is one of the few MERIT awards awarded three consecutive times, and it is the longest continually funded grant of the NCI Division of Cancer Diagnosis and Treatment. My last NCI Award was an Outstanding Investigator Award from 2014 to 2022.

In addition to the representative publications listed, I have made national presentations and international presentations during the past year.

My laboratory has trained over 50 third year medical students, residents, Ph.D. students, and postdoctoral fellows and I have a great deal of experience in career development with some students having advanced all the way from fellowship status to endowed professorships. A major goal with third year medical students is to perform work that can be presented in abstract form at national or international meetings and to obtain publication in major peer-reviewed journals.

Lin

Hui-Kuan Lin

Fred and Janet Sanfilippo Distinguished Professor

The research interest in Dr. Lin lab is to understand oncogenic networks between oncogenes and tumor suppressor genes, dissect the regulatory mechanisms underlying  the crosstalk between ageing and cancer, to unravel the role of posttranslational modifications (PTMs) such as ubiquitination  and metabolism in diverse molecular and biological processes important for cancer progression and metastasis, cancer stem regulation, cancer immunity and drug resistance by using biochemical and molecular approaches along with and genetic mouse models, and finally to develop small molecule inhibitors and antibodies targeting critical oncogenic signaling and metabolic vulnerabilities for cancer treatment. His research goals aim to not only reveal fundamental insights and concepts for cancer biology and cancer immunity, but also develop novel paradigms and therapeutic strategies for targeting human cancer and overcoming drug resistance.

Research interests include:

  • Crosstalk between oncogenic and tumor suppressor networks
  • Posttranslational modifications in signaling and cancer
  • Cancer progression and metastasis
  • Biology of normal and cancer stem cells
  • Metabolism in cancer and ageing

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.