Organ Doses from CT Localizer Radiographs: Development, Validation, and Application of a Monte Carlo Estimation Technique.

Abstract

PURPOSE:The purpose of this study was to simulate and validate organ doses from different CT localizer radiograph geometries using Monte Carlo methods for a population of patients. METHODS:A Monte Carlo method was developed to estimate organ doses from CT localizer radiographs using PENELOPE. The method was validated by comparing dosimetry estimates with measurements using an anthropomorphic phantom imbedded with thermoluminescent dosimeters (TLDs) scanned on a commercial CT system (Siemens SOMATOM Flash). The Monte Carlo simulation platform was then applied to conduct a population study with fifty-seven adult computational phantoms (XCAT). In the population study, clinically relevant chest localizer protocols were simulated with the x-ray tube in anterior-posterior (AP), right lateral, and PA positions. Mean organ doses and associated standard deviations (in mGy) were then estimated for all simulations. The obtained organ doses were studied as a function of patient chest diameter. Organ doses for breast and lung were compared across different views and represented as a percentage of organ doses from rotational CT scans. RESULTS:The validation study showed an agreement between the Monte Carlo and physical TLD measurements with a maximum percent difference of 15.5% and a mean difference of 3.5% across all organs. The XCAT population study showed that breast dose from AP localizers was the highest with a mean value of 0.24 mGy across patients, while the lung dose was relatively consistent across different localizer geometries. The organ dose estimates were found to vary across the patient population, partially explained by the changes in the patient chest diameter. The average effective dose was 0.18 mGy for AP, 0.09 mGy for lateral, and 0.08 mGy for PA localizer. CONCLUSION:A platform to estimate organ doses in CT localizer scans using Monte Carlo methods was implemented and validated based on comparison with physical dose measurements. The simulation platform was applied to a virtual patient population, where the localizer organ doses were found to range within 0.4-8.6% of corresponding organ doses for a typical CT scan, 0.2-3.3% of organ doses for a CT pulmonary angiography scan, and 1.1-20.8% of organ doses for a low dose lung cancer screening scan.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1002/mp.13781

Publication Info

Hoye, Jocelyn, Shobhit Sharma, Yakun Zhang, Wanyi Fu, Francesco Ria, Anuj Kapadia, W Paul Segars, Joshua Wilson, et al. (2019). Organ Doses from CT Localizer Radiographs: Development, Validation, and Application of a Monte Carlo Estimation Technique. Medical physics. 10.1002/mp.13781 Retrieved from https://hdl.handle.net/10161/19242.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Segars

William Paul Segars

Professor in Radiology

Our current research involves the use of computer-generated phantoms and simulation techniques to investigate and optimize medical imaging systems and methods. Medical imaging simulation involves virtual experiments carried out entirely on the computer using computational models for the patients as well as the imaging devices. Simulation is a powerful tool for characterizing, evaluating, and optimizing medical imaging systems. A vital aspect of simulation is to have realistic models of the subject's anatomy as well as accurate models for the physics of the imaging process. Without this, the results of the simulation may not be indicative of what would occur in actual clinical studies and would, therefore, have limited practical value. We are leading the development of realistic simulation tools for use toward human and small animal imaging research.

These tools have a wide variety of applications in many different imaging modalities to investigate the effects of anatomical, physiological, physical, and instrumentational factors on medical imaging and to research new image acquisition strategies, image processing and reconstruction methods, and image visualization and interpretation techniques. We are currently applying them to the field of x-ray CT. The motivation for this work is the lack of sufficiently rigorous methods for optimizing the image quality and radiation dose in x-ray CT to the clinical needs of a given procedure. The danger of unnecessary radiation exposure from CT applications, especially for pediatrics, is just now being addressed. Optimization is essential in order for new and emerging CT applications to be truly useful and not represent a danger to the patient. Given the relatively high radiation doses required of current CT systems, thorough optimization is unlikely to ever be done in live patients. It would be prohibitively expensive to fabricate physical phantoms to simulate a realistic range of patient sizes and clinical needs especially when physiologic motion needs to be considered. The only practical approach to the optimization problem is through the use of realistic computer simulation tools developed in our work.

Wilson

Joshua Wilson

Assistant Professor of Radiology
Samei

Ehsan Samei

Reed and Martha Rice Distinguished Professor of Radiology

Dr. Ehsan Samei, PhD, DABR, FAAPM, FSPIE, FAIMBE, FIOMP, FACR is a Persian-American medical physicist. He is the Reed and Martha Rice Distinguished Professor of Radiology, and Professor of Medical Physics, Biomedical Engineering, Physics, and Electrical and Computer Engineering at Duke University. He serves as the Chief Imaging Physicist for Duke University Health System, the Director of the Carl E Ravin Advanced Imaging Laboratories and the Center for Virtual Imaging Trials (CVIT), and co-PI of one the five Centers of Excellence in Regulatory Science and Innovation (CERSI), Triangle CERSI. He is certified by the American Board of Radiology, recognized as a Distinguished Investigator by the Academy of Radiology Research, and awarded Fellow by five professional organization. He founded/co-founded the Duke Medical Physics Program, the Duke Imaging Physics Residency Program, the Duke Clinical Imaging Physics Group, the Center for Virtual Imaging Trials, and the Society of Directors of Academic Medical Physics Programs (SDAMPP). He has held senior leadership positions in the AAPM, SPIE, SDAMPP, and RSNA, including election to the presidency of the SEAAPM (2010-2011), SDAMPP (2011), and AAPM (2023).

Dr. Samei's scientific expertise include x-ray imaging, theoretical imaging models, simulation methods, and experimental techniques in medical image formation, quantification, and perception. His research aims to bridge the gap between scientific scholarship and clinical practice, in the meaningful realization of translational research, and in clinical processes that are informed by scientific evidence. He has advanced image quality and safety metrics and radiometrics that are clinically relevant and that can be used to design, optimize, and monitor interpretive and quantitative performance of imaging techniques. These have been implemented in advanced imaging performance characterization, procedural optimization, and clinical dose and quality analytics. His most recent research interests have been virtual clinical trial across a broad spectrum of oncologic, pulmonary, cardiac, and vascular diseases, and developing methodological advances that provide smart fusions of principle-informed and AI-based, data-informed approaches to scientific inquiry.

Dr. Samei has mentored over 140 trainees (graduate and postgraduate). He has more than 1400 scientific publications including more than 360 referred journal articles, 600 conference presentations, and 4 books. Citations to his work is reflected in an h-index of 74 and a Weighted Relative Citation Ratio of 613. His laboratory of over 20 researchers has been supported continuously over two decades by 44 extramural grants, culminating in a NIH Program Project grant in 2021 to establish the national Center for Virtual Imaging Trials (CVIT), joining a small number of prominent Biomedical Technology Research Centers across the nation. In 2023, he, along with 3 other PIs, was awarded to lead one of five national Centers of Excellence in Regulatory Science and Innovation (Triangle CERSI) by the FDA.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.