Evaluation of dosimetric uncertainty caused by MR geometric distortion in MRI-based liver SBRT treatment planning.

Loading...
Thumbnail Image

Date

2019-02

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

157
views
37
downloads

Citation Stats

Abstract

PURPOSE:MRI-based treatment planning is a promising technique for liver stereotactic-body radiation therapy (SBRT) treatment planning to improve target volume delineation and reduce radiation dose to normal tissues. MR geometric distortion, however, is a source of potential error in MRI-based treatment planning. The aim of this study is to investigate dosimetric uncertainties caused by MRI geometric distortion in MRI-based treatment planning for liver SBRT. MATERIALS AND METHODS:The study was conducted using computer simulations. 3D MR geometric distortion was simulated using measured data in the literature. Planning MR images with distortions were generated by integrating the simulated 3D MR geometric distortion onto planning CT images. MRI-based treatment plans were then generated on the planning MR images with two dose calculation methods: (1) using original CT numbers; and (2) using organ-specific assigned CT numbers. Dosimetric uncertainties of various dose-volume-histogram parameters were determined as their differences between the simulated MRI-based plans and the original clinical CT-based plans for five liver SBRT cases. RESULTS:The average simulated distortion for the five liver SBRT cases was 2.77 mm. In the case of using original CT numbers for dose calculation, the average dose uncertainties for target volumes and critical structures were <0.5 Gy, and the average target volume percentage at prescription dose uncertainties was 0.97%. In the case of using assigned CT numbers, the average dose uncertainties for target volumes and critical structures were <1.0 Gy, and the average target volume percentage at prescription dose uncertainties was 2.02%. CONCLUSIONS:Dosimetric uncertainties caused by MR geometric distortion in MRI-based liver SBRT treatment planning was generally small (<1 Gy) when the distortion is 3 mm.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1002/acm2.12520

Publication Info

Han, Silu, Fang-Fang Yin and Jing Cai (2019). Evaluation of dosimetric uncertainty caused by MR geometric distortion in MRI-based liver SBRT treatment planning. Journal of applied clinical medical physics, 20(2). pp. 43–50. 10.1002/acm2.12520 Retrieved from https://hdl.handle.net/10161/19371.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Yin

Fang-Fang Yin

Gustavo S. Montana Distinguished Professor of Radiation Oncology

Stereotactic radiosurgery, Stereotactic body radiation therapy, treatment planning optimization, knowledge guided radiation therapy, intensity-modulated radiation therapy, image-guided radiation therapy, oncological imaging and informatics

Cai

Jing Cai

Adjunct Associate Professor in the Radiation Oncology

Image-guided Radiation Therapy (IGRT), Magnetic Resonance Imaging (MRI), Tumor Motion Management, Four-Dimensional Radiation Therapy (4DRT), Stereotatic-Body Radiation Therapy (SBRT), Brachytherapy, Treatment Planning, Lung Cancer, Liver Cancer, Cervical Cancer.




Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.