Evaluation of integrated respiratory gating systems on a Novalis Tx system.

Loading...
Thumbnail Image

Date

2011-04-04

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

229
views
38
downloads

Citation Stats

Abstract

The purpose of this study was to investigate the accuracy of motion tracking and radiation delivery control of integrated gating systems on a Novalis Tx system. The study was performed on a Novalis Tx system, which is equipped with Varian Real-time Position Management (RPM) system, and BrainLAB ExacTrac gating systems. In this study, the two systems were assessed on accuracy of both motion tracking and radiation delivery control. To evaluate motion tracking, two artificial motion profiles and five patients' respiratory profiles were used. The motion trajectories acquired by the two gating systems were compared against the references. To assess radiation delivery control, time delays were measured using a single-exposure method. More specifically, radiation is delivered with a 4 mm diameter cone within the phase range of 10%-45% for the BrainLAB ExacTrac system, and within the phase range of 0%-25% for the Varian RPM system during expiration, each for three times. Radiochromic films were used to record the radiation exposures and to calculate the time delays. In the work, the discrepancies were quantified using the parameters of mean and standard deviation (SD). Pearson's product-moment correlational analysis was used to test correlation of the data, which is quantified using a parameter of r. The trajectory profiles acquired by the gating systems show good agreement with those reference profiles. A quantitative analysis shows that the average mean discrepancies between BrainLAB ExacTrac system and known references are 1.5 mm and 1.9 mm for artificial and patient profiles, with the maximum motion amplitude of 28.0 mm. As for the Varian RPM system, the corresponding average mean discrepancies are 1.1 mm and 1.7 mm for artificial and patient profiles. With the proposed single-exposure method, the time delays are found to be 0.20 ± 0.03 seconds and 0.09 ± 0.01 seconds for BrainLAB ExacTrac and Varian RPM systems, respectively. The results indicate the systems can track motion and control radiation delivery with reasonable accuracy. The proposed single-exposure method has been demonstrated to be feasible in measuring time delay efficiently.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1120/jacmp.v12i3.3495

Publication Info

Chang, Zheng, Tonghai Liu, Jing Cai, Qing Chen, Zhiheng Wang and Fang-Fang Yin (2011). Evaluation of integrated respiratory gating systems on a Novalis Tx system. Journal of applied clinical medical physics, 12(3). p. 3495. 10.1120/jacmp.v12i3.3495 Retrieved from https://hdl.handle.net/10161/19375.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Chang

Zheng Chang

Professor of Radiation Oncology

Dr. Chang's research interests include radiation therapy treatment assessment using MR quantitative imaging, image guided radiation therapy (IGRT), fast MR imaging using parallel imaging and strategic phase encoding, and motion management for IGRT.

Cai

Jing Cai

Adjunct Associate Professor in the Radiation Oncology

Image-guided Radiation Therapy (IGRT), Magnetic Resonance Imaging (MRI), Tumor Motion Management, Four-Dimensional Radiation Therapy (4DRT), Stereotatic-Body Radiation Therapy (SBRT), Brachytherapy, Treatment Planning, Lung Cancer, Liver Cancer, Cervical Cancer.



Yin

Fang-Fang Yin

Gustavo S. Montana Distinguished Professor of Radiation Oncology

Stereotactic radiosurgery, Stereotactic body radiation therapy, treatment planning optimization, knowledge guided radiation therapy, intensity-modulated radiation therapy, image-guided radiation therapy, oncological imaging and informatics


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.