Mean-Field Caging in a Random Lorentz Gas.
Date
2021-06-07
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
The random Lorentz gas (RLG) is a minimal model of both percolation and glassiness, which leads to a paradox in the infinite-dimensional, d → ∞ limit: the localization transition is then expected to be continuous for the former and discontinuous for the latter. As a putative resolution, we have recently suggested that, as d increases, the behavior of the RLG converges to the glassy description and that percolation physics is recovered thanks to finite-d perturbative and nonperturbative (instantonic) corrections [Biroli et al. Phys. Rev. E 2021, 103, L030104]. Here, we expand on the d → ∞ physics by considering a simpler static solution as well as the dynamical solution of the RLG. Comparing the 1/d correction of this solution with numerical results reveals that even perturbative corrections fall out of reach of existing theoretical descriptions. Comparing the dynamical solution with the mode-coupling theory (MCT) results further reveals that, although key quantitative features of MCT are far off the mark, it does properly capture the discontinuous nature of the d → ∞ RLG. These insights help chart a path toward a complete description of finite-dimensional glasses.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Biroli, Giulio, Patrick Charbonneau, Yi Hu, Harukuni Ikeda, Grzegorz Szamel and Francesco Zamponi (2021). Mean-Field Caging in a Random Lorentz Gas. The journal of physical chemistry. B, 125(23). pp. 6244–6254. 10.1021/acs.jpcb.1c02067 Retrieved from https://hdl.handle.net/10161/24975.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Patrick Charbonneau
Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.