Site-Specific Effects of Online rTMS during a Working Memory Task in Healthy Older Adults.


The process of manipulating information within working memory is central to many cognitive functions, but also declines rapidly in old age. Improving this process could markedly enhance the health-span in older adults. The current pre-registered, randomized and placebo-controlled study tested the potential of online repetitive transcranial magnetic stimulation (rTMS) applied at 5 Hz over the left lateral parietal cortex to enhance working memory manipulation in healthy elderly adults. rTMS was applied, while participants performed a delayed-response alphabetization task with two individually titrated levels of difficulty. Coil placement and stimulation amplitude were calculated from fMRI activation maps combined with electric field modeling on an individual-subject basis in order to standardize dosing at the targeted cortical location. Contrary to the a priori hypothesis, active rTMS significantly decreased accuracy relative to sham, and only in the hardest difficulty level. When compared to the results from our previous study, in which rTMS was applied over the left prefrontal cortex, we found equivalent effect sizes but opposite directionality suggesting a site-specific effect of rTMS. These results demonstrate engagement of cortical working memory processing using a novel TMS targeting approach, while also providing prescriptions for future studies seeking to enhance memory through rTMS.





Published Version (Please cite this version)


Publication Info

Beynel, Lysianne, Simon W Davis, Courtney A Crowell, Moritz Dannhauer, Wesley Lim, Hannah Palmer, Susan A Hilbig, Alexandra Brito, et al. (2020). Site-Specific Effects of Online rTMS during a Working Memory Task in Healthy Older Adults. Brain sciences, 10(5). pp. 255–255. 10.3390/brainsci10050255 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Roberto Cabeza

Professor of Psychology and Neuroscience

My laboratory investigates the neural correlates of memory and cognition in young and older adults using fMRI. We have three main lines of research: First, we distinguish the neural correlates of various episodic memory processes. For example, we have compared encoding vs. retrieval, item vs. source memory, recall vs. recognition, true vs. false memory, and emotional vs. nonemotional memory. We are particularly interested in the contribution of prefrontal cortex (PFC) and medial temporal lobe (MTL) subregions and their interactions. Second, we investigate similarities and differences between the neural correlates of episodic memory and other memory and cognitive functions (working, semantic, implicit, and procedural memory; attention; perception, etc.). The main goal of this cross-functional approach is to understand the contributions of brain regions shared by different cognitive functions. Finally, in both episodic memory and cross-function studies, we also examine the effects of healthy and pathological aging. Regarding episodic memory, we have linked processes differentially affected by aging (e.g., item vs. source memory, recall vs. recognition) to the effects of aging on specific PFC and MTL subregions. Regarding cross-function comparisons, we identify age-related changes in activity that are common to various functions. For example, we have found an age-related increase in bilaterality that occurs for many functions (memory, attention, language, perception, and motor) and is associated with functional compensation.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.